RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:9:30-18:00
你可能遇到了下面的问题
关闭右侧工具栏
非线性的概念、性质及其哲学意义
  • 作者:xiaoxiao
  • 发表时间:2020-12-23 11:00
  • 来源:未知

摘自maker的  动力学与控制技术论坛 → ***动力学与控制理论和应用*** → 非线性与现代数学 → [转帖]非线性的概念、性质及其哲学意义                                        ---------                                        --浅释非线性--                                        --------- 一些令人印象深刻的话语:        迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。        线性:从相互关联的两个角度来界定,其一:叠加原理成立;其二:物理变量间的函数关系是直线,变量间的变化率是恒量。        非线性:其一:φ与ψ间存在着耦合;其二,作为等价的另—种表述,物理变量间的一级增量关系在变量的定义域内是不对称的。可以说,这种对称破缺是非线性关系的最基本的体现,也是非线性系统复杂性的根源。对于不同的对象,其一和其二两种表述有各自的方便之处。   关于线性与非线性的联系:           一些非线性不强的问题,可用线性逼近方法将其转化为若干线性问题来求近似解,这是已在各门学科中广泛采用并相当有效的的方法。          对某些问题从非线性的角度考察不仅是可能的,而且有时也是必要的。         关于线性与非线性的 本质区别:       非线性与线性虽然可以通过数学变换而相互转化,在数学上有一定的联系,但是在同一视角、同一层次、同一参照系下,非线性与线性又是有本质区别的。            在 数学上,线性函数关系是直线,而非线性函数关系是非直线,包括各种曲线、折线、不连续的线等;线性方程满足叠加原理,非线性方程不满足叠加原理;线性方程易于求出解析解,而非线性方程一般不能得出解析解。     在 物理上,近线性问题(它不是我们所说的非线性问题)可用线性逼近方法求出一定精确度的解,即依据具体问题对精确度的要求,逐次解出若干个线性问题,把它们叠加起来,就能得到很好的近似解。但是对于非线性问题,由于存有小参数发散及收敛慢等问题,线性逼近方法将失效,特别是对于高速运动状态、强烈的相互作用、长时间的动态行为等非线性很强的情况,线性方法将完全无能为力。线性逼近方法的这些局限性,导致非线性方法的不可替代,在无法用线性方法处理的强非线性的地方,只能用非线性方法。线性逼近方法并非经常能奏效,这不光是方法论问题,也是自然观问题,自然界既有量变又有质变,[5]在质变中, 自然界要经历跃变或转折,这是线性所不能包容的。