RELATEED CONSULTING
相关咨询
选择下列产品马上在线沟通
服务时间:9:30-18:00
你可能遇到了下面的问题
关闭右侧工具栏
中国力学的发展
  • 作者:zhaozj
  • 发表时间:2020-12-23 11:00
  • 来源:未知

 

力学是研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系、宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。通常理解的力学以研究天然的或人工的宏观对象为主。但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。机械运动亦即力学运动是物质在时间、空间中的位置变化,它是物质在时间、空间中的位置变化,物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。机械运动并不能脱离其他运动形式独立存在,只是在研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。力是物质间的可以说是力和运动的科学。   1 力学学科的战略地位            1.1 力学发展的回顾      1.2 我国力学研究的状况      1.3 力学发展的趋势和重要方向------------------------------------------------------[size=4]    1.1 力学发展的回顾[/size]            力学的发展始终是和人类的生产活动紧密结合的,3000多年前的墨经上就有简单的杠杆原理。在西方,古希腊的阿基米德对静力学就有了一些系统的论述。这都与当时的生产水平相适应。  17世纪初,欧洲资本主义萌芽,科学挣脱神学的束缚而开始复苏。伽利略是进行系统实验研究的先驱,提出了加速度的概念和惯性原理。开普勒根据天文观测资料总结出行星运动的规律。牛顿继承和发扬了前人的成果,提出了物体运动三定律和万有引力定律。[B]可见,至牛顿时代,力学形成了一门科学,同时推动了微积分的发展,[/B]其后,随着欧洲逐步工业化,力学得到了很大的发展。上个世纪,力学已经有了不少分支。例如与水利及城市给排水建设有关的水力学,与建筑、桥梁、道路等有关的材料力学和结构力学,与军事有关的弹道学,以及理论性较强的理想流体力学,分析力学和弹性力学。与此同时,力学成了物理学的重要组成部分,并促进了数学的发展。  力学的大发展开始于20世纪初。[B]最突出的成就是流体力学中边界层理论的提出[/B]。上个世纪水力学和理想流体力学得到了很大发展,前者紧密地结合工程实际,但含有不少经验成分; 而后者理论很完美,但不能计算物体在真实流体中运动时所受到的力。德国的[B]普朗特[/B] (L.Prandtl)通过实验观察,发现流体的粘性在紧靠物体表面的一薄层中不能忽略,但在离物体稍远处则完全可以忽略。根据这一思想,他提出了边界层理论,圆满地解决了在计算物体所受阻力和升力中所遇到的疑难问题,正是在这个基础上,诞生了现代流体力学。有意思的是这种“边界层”的现象后来发现在很多其他领域中也存在,同样可以应用普朗特的思想解决问题。同时这也促成了应用数学中十分有用的“渐近匹配法”的发展。  力学的飞速发展是伴随着第一次大战后航空工业的发展而进行的。尽管当时几乎所有的大生产部门都依赖于力学理论的指导,但只有航空工业对飞机设计提出的轻、快、安全的高难度要求,才使得航空工业离开了力学寸步难行,从而极大地推动了空气动力学,固体力学中的板、壳理论,结构分析,塑性力学,疲劳理论的发展,而反过来,力学一旦形成一门科学,就会为完善本身学科的要求出发而提出众多基础问题。这些基础研究的储备,又大大缩短了解决实际问题的时间。      从低速飞行到高速飞行的发展,就是一个极好的例子,一方面可压缩流体力学的研究是不可压流体力学的自然延伸; 而另一方面,以[B]普朗特、冯·卡门(T.von Karman)、钱学森为代表的应用力学学派开创了一条工程和力学相结合的道路[/B]。他们先后提出和围绕“[B]声障[/B]”和“[B]热障[/B]”问题,展开了系统的研究,奠定了高速空气动力学和气体动力学的理论基础,从而也为超声速飞机、火箭和导弹的研制、设计和制造赋予严密和完整的基础,人们从此进入了喷气技术的时代,形成了今天的大规模的航空、航天产业。航天技术中一系列问题的解决,形成了高温空气动力学、稀薄气体力学、化学流体力学、物理力学以及断裂力学、损伤力学等一大批新兴力学学科。由于这些学科所取得的成就又被进一步广泛地应用于民用工业,促进了民用工业的发展,例如化学流体力学对化工、冶金,断裂力学对机械、交通和建筑等。力学与工程紧密结合的倾向也在其他工程部门的迅速发展中得到反映,如与水利、采矿、高层建筑、金属加工、造船等工业结合,促进了土力学、岩石力学、塑性力学、水动力学等的发展。原子弹聚爆方案和引爆技术的提出归功于流体力学中的冲击波理论与量纲分析的运用。核武器的研制和发展,则与爆炸力学的形成和发展紧密相联。化学工业的迅速发展有赖于非牛顿流、多相流的力学研究,等等。上述情况充分说明力学与工程相结合的超前研究为新产业的形成起着奠基和催生的作用。  [B]20世纪下半叶、航天任务基本实现以后,力学家开始转向新的力学生长点,特别是在天、地、生方面取得丰硕成果[/B]。结合天体现象的研究,用磁流体力学研究太阳风的发生和发展规律,用流体力学结合恒星动力学解释星系螺旋结构,用相对论流体力学研究星系的演化等取得了成果。力学家研究了生物的形态和组织,建立了生物力学,从而在定量生理学、临床诊断和检测分析、人工器官的设计和制造等方面取得成就,并业已形成一门新的生物医学工程。力学向地球科学渗透,在板块动力学、构造应力场、地震机制与预报及与之有关的反演等方面取得进展,并进一步推动岩石力学的研究。  以上我们着重谈了力学与生产的关系。现在我们再来看看力学与整个科学的关系。  力学原是物理学的一个分支。物理科学的建立是从力学开始的。在物理科学中,人们曾用纯粹力学理论解释机械运动以外的各种形式的运动,如热、电磁、光、分子和原子内部的运动等。当物理学摆脱了这种机械唯物主义的自然观而获得健康发展时,力学则在工程技术的推动下按自身逻辑进一步演化,逐步从物理学中独立出来。由于各种运动形态往往同时出现,宏观运动与微观运动又有内在联系,力学与物理学存在着特殊的亲缘关系,许多概念、方法和理论都有不少相似之处。力学与数学是整个自然科学中发展得最早的两个学科,他们在发展中始终相互推动,相互促进,这种紧密的联系特别表现在力学理论和微分方程理论的同步发展方面,本世纪内形成的应用数学则在很大程度上是力学和数学结合的交叉学科。[B]应当指出力学有一个重要特点是有别于数学的,它和物理一样,还需要实验作为基础[/B],任何一种力学模型和理论总是源出于实际现象,并在实践和应用中受到检验。力学的发展相对于其他学科有一定的“超前性”,不少在力学中提出的规律、理论和方法,后来发现在其他领域中同样有效。  为说明力学与其他科学的关系,应该提到本世纪在对非线性力学现象中所取得的突出成就,它们对当前[B]非线性科学的兴起[/B]起到先驱和核心的作用。例如,经典力学在上个世纪就提出的关于[B]物体运动稳定性的理论[/B],不仅在第二次世界大战中,被引用到[B]自动控制理论[/B]中,大大缩短了其理论的形成过程;而且这一理论在当前十分热门的[B]混沌理论[/B]中又得到了应用。本世纪初在天体力学中发展起来的[B]摄动法[/B],为近代非线性科学中的[B]分岔理论[/B]及各种系统的非线性振动理论提供了分析的手段,而两个世纪前在固体力学中提出的[B]压杆失稳理论,则是分岔现象的第一个科学例子[/B]。上个世纪末观察到的水中的[B]孤立波,是非线性科学中孤立子理论的先驱[/B]。为此提出的[B]KdV[/B]方程,至今仍是孤立子理论的典型方程之一,而孤立子理论推动了光学中相应理论的发展,且成为实现[B]现代光通信技术[/B]的关键。60年代由气象学中提出的[B]流体力学问题,开创了混沌学的研究[/B],[B]从根本上改变了经典物理中确定性的观点[/B],也深深地影响了人们的自然观,而被认为是20世纪科学最伟大发现之一。  还应该提一提科学计算的问题,由于大型、复杂建筑物如摩天大楼结构设计的需要,早在计算机出现之前,力学工作者就提出了若干种分析大型、复杂结构物的计算方法。电子计算机的问世,大大促进了这方面的发展,改变了原来的思路。在50年代,即已出现了后来被称为[B]有限元法[/B]的思想并迅速被推广到力学的各个分支及其他科学领域。而航空航天技术中流场计算以及原子弹、氢弹引爆过程和爆炸效应的计算需要,又大大促进有限差分法的发展。为了适应复杂结构及流场等大型计算,提出了各种网格划分、分区计算、分裂算子、并行计算等方法。可以毫不夸大地说,力学计算的需要是现代计算科学的最有力的推动力之一。电子计算机出现后的首批重要科学和工程计算中,力学问题占了相当大的比重。  以上我们强调了由于人们能直接感知的只是宏观事物,因此不少科学中的普遍规律(指在各学科中有共性的)往往先在力学现象中被发现和研究,然后渗透到其他学科并得到更大发展。同时我们也应该看到,力学的发展也从其他学科分支中借用或引用了不少成果。例如现代航天技术中的高速高温气流往往伴有复杂的物理、化学过程,不用物理、化学的知识是不行的。近代力学的多种实验手段是建立在近代光学、电子学及计算机等学科的基础上而不断发展的。又如量子力学的发展,大大促进了数学物理方法的发展,力学从中也受益不小。因此,力学工作者也应密切注视其他学科的发展,从中吸取新思想、新理论及新方法。  力学发展的历史充分说明:力学同物理学、数学等学科一样,是一门基础科学,它所阐明的规律带有普遍的性质;力学又是一门技术科学,它是许多工程技术的理论基础,又在广泛的应用过程中不断得到发展。力学既是基础科学又是技术科学这种二重性使力学家感到自豪,他们为沟通人类认识自然和改造自然两个方面作出了贡献。[align=right][color=#000066][此贴子已经被作者于2004-2-1 17:13:49编辑过][/color][/align]